The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Markov Chain(69hit)

1-20hit(69hit)

  • Saliency Detection via Absorbing Markov Chain with Multi-Level Cues

    Pengfei LV  Xiaosheng YU  Jianning CHI  Chengdong WU  

     
    LETTER-Image

      Pubricized:
    2021/12/07
      Vol:
    E105-A No:6
      Page(s):
    1010-1014

    A robust saliency detection approach for images with a complex background is proposed. The absorbing Markov chain integrating low-level, mid-level and high-level cues dynamically evolves by using the similarity between pixels to detect saliency objects. The experimental results show that the proposed algorithm has advantages in saliency detection, especially for images with a chaotic background or low contrast.

  • Markov-Chain Analysis Model based Active Period Adaptation Scheme for IEEE 802.15.4 Network

    Ryota HORIUCHI  Kohei TOMITA  Nobuyoshi KOMURO  

     
    PAPER

      Pubricized:
    2021/10/22
      Vol:
    E105-A No:5
      Page(s):
    770-777

    Energy efficiency is one of the critical issues for Wireless Sensor Networks (WSN). IEEE 802.15.4 beacon-enabled MAC protocol achieves low energy consumption by having periodical inactive portions, where nodes run in low power. However, IEEE 802.15.4 beacon-enabled protocol cannot respond to dynamic changes in the number of sensor nodes and data rates in WSN because its duty cycle is fixed and immutable. In this paper, we propose a dynamic superframe duration adaptation scheme based on the Markov chain-based analysis methods for IEEE 802.15.4 beacon-enabled protocol. The proposed methods are flexible enough to accommodate changes in the number of sensor nodes and differences in data rates in WSNs while maintaining low latency and low energy consumption despite slight degradation in packet delivery ratio.

  • Comparison of a Probabilistic Returning Scheme for Preemptive and Non-Preemptive Schemes in Cognitive Radio Networks with Two Classes of Secondary Users

    Yuan ZHAO  Wuyi YUE  Yutaka TAKAHASHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2021/09/24
      Vol:
    E105-B No:3
      Page(s):
    338-346

    In this paper, we consider the transmission needs of communication networks for two classes of secondary users (SUs), named SU1 and SU2 (lowest priority) in cognitive radio networks (CRNs). In such CRNs, primary users (PUs) have preemptive priority over both SU1's users (SU1s) and SU2's users (SU2s). We propose a preemptive scheme (referred to as the P Scheme) and a non-preemptive scheme (referred to as the Non-P Scheme) when considering the interactions between SU1s and SU2s. Focusing on the transmission interruptions to SU2 packets, we present a probabilistic returning scheme with a returning probability to realize feedback control for SU2 packets. We present a Markov chain model to develop some formulas for SU1 and SU2 packets, and compare the influences of the P Scheme and the Non-P Scheme in the proposed probabilistic returning scheme. Numerical analyses compare the impact of the returning probability on the P Scheme and the Non-P Scheme. Furthermore, we optimize the returning probability and compare the optimal numerical results yielded by the P Scheme and the Non-P Scheme.

  • Performance Analysis of IEEE 802.11 DCF Based on a Macroscopic State Description

    Xiang LI  Yuki NARITA  Yuta GOTOH  Shigeo SHIODA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:8
      Page(s):
    1923-1932

    We propose an analytical model for IEEE 802.11 wireless local area networks (WLANs). The analytical model uses macroscopic descriptions of the distributed coordination function (DCF): the backoff process is described by a few macroscopic states (medium-idle, transmission, and medium-busy), which obviates the need to track the specific backoff counter/backoff stages. We further assume that the transitions between the macroscopic states can be characterized as a continuous-time Markov chain under the assumption that state persistent times are exponentially distributed. This macroscopic description of DCF allows us to utilize a two-dimensional continuous-time Markov chain for simplifying DCF performance analysis and queueing processes. By comparison with simulation results, we show that the proposed model accurately estimates the throughput performance and average queue length under light, heavy, or asymmetric traffic.

  • Performance Analysis of a Cognitive Radio Network with Imperfect Spectrum Sensing

    Osama SALAMEH  Koen DE TURCK  Dieter FIEMS  Herwig BRUNEEL  Sabine WITTEVRONGEL  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/22
      Vol:
    E101-B No:1
      Page(s):
    213-222

    In Cognitive Radio Networks (CRNs), spectrum sensing is performed by secondary (unlicensed) users to utilize transmission opportunities, so-called white spaces or spectrum holes, in the primary (licensed) frequency bands. Secondary users (SUs) perform sensing upon arrival to find an idle channel for transmission as well as during transmission to avoid interfering with primary users (PUs). In practice, spectrum sensing is not perfect and sensing errors including false alarms and misdetections are inevitable. In this paper, we develop a continuous-time Markov chain model to study the effect of false alarms and misdetections of SUs on several performance measures including the collision rate between PUs and SUs, the throughput of SUs and the SU delay in a CRN. Numerical results indicate that sensing errors can have a high impact on the performance measures.

  • The Reliability Analysis of the 1-out-of-2 System in Which Two Modules Do Mutual Cooperation in Recovery Mode

    Aromhack SAYSANASONGKHAM  Satoshi FUKUMOTO  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E99-A No:9
      Page(s):
    1730-1734

    In this research, we investigated the reliability of a 1-out-of-2 system with two-stage repair comprising hardware restoration and data reconstruction modes. Hardware restoration is normally independently executed by two modules. In contrast, we assumed that one of the modules could omit data reconstruction by replicating the data from the module during normal operation. In this 1-out-of-2 system, the two modules mutually cooperated in the recovery mode. As a first step, an evaluation model using Markov chains was constructed to derive a reliability measure: “unavailability in steady state.” Numerical examples confirmed that the reliability of the system was improved by the use of two cooperating modules. As the data reconstruction time increased, the gains in terms of system reliability also increased.

  • Uplink Blocking Probabilities in Priority-Based Cellular CDMA Networks with Finite Source Population

    Vassilios G. VASSILAKIS  Ioannis D. MOSCHOLIOS  Michael D. LOGOTHETIS  

     
    PAPER

      Vol:
    E99-B No:6
      Page(s):
    1302-1309

    Fast proliferation of mobile Internet and high-demand mobile applications necessitates the introduction of different priority classes in next-generation cellular networks. This is especially crucial for efficient use of radio resources in the heterogeneous and virtualized network environments. Despite the fact that many analytical tools have been proposed for capacity and radio resource modelling in cellular networks, only a few of them explicitly incorporate priorities among services. We propose a novel analytical model to analyse the performance of a priority-based cellular CDMA system with finite source population. When the cell load is above a certain level, low-priority calls may be blocked to preserve the quality of service of high-priority calls. The proposed model leads to an efficient closed-form solution that enables fast and very accurate calculation of resource occupancy of the CDMA system and call blocking probabilities, for different services and many priority classes. To achieve them, the system is modelled as a continuous-time Markov chain. We evaluate the accuracy of the proposed analytical model by means of computer simulations and find that the introduced approximation errors are negligible.

  • Quantifying Resiliency of Virtualized System with Software Rejuvenation

    Hiroyuki OKAMURA  Jungang GUAN  Chao LUO  Tadashi DOHI  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2051-2059

    This paper considers how to evaluate the resiliency for virtualized system with software rejuvenation. The software rejuvenation is a proactive technique to prevent the failure caused by aging phenomenon such as resource exhaustion. In particular, according to Gohsh et al. (2010), we compute a quantitative criterion to evaluate resiliency of system by using continuous-time Markov chains (CTMC). In addition, in order to convert general state-based models to CTMCs, we employ PH (phase-type) expansion technique. In numerical examples, we investigate the resiliency of virtualized system with software rejuvenation under two different rejuvenation policies.

  • RTT Estimation with Sampled Flow Data

    Qi SU  Jian GONG  Xiaoyan HU  

     
    PAPER-Network Management/Operation

      Vol:
    E98-B No:9
      Page(s):
    1848-1857

    Round-trip time (RTT) is an important performance metric. Traditional RTT estimation methods usually depend on the cooperation of other networks and particular active or passive measurement platforms, whose global deployments are costly and difficult. Thus a new RTT estimation algorithm, ME algorithm, is introduced. It can estimate the RTT of two hosts communicating through border routers by using TCP CUBIC bulk flow data from those routhers without the use of extra facilities, which makes the RTT estimation in large-scale high-speed networks more effective. In addition, a simpler and more accurate algorithm — AE algorithm — is presented and used when the link has large bandwidth and low packet loss rate. The two proposed algorithms suit sampled flow data because only duration and total packet number of a TCP CUBIC bulk flow are inputs to their calculations. Experimental results show that both algorithms work excellently in real situations. Moreover, they have the potential to be adapted to other TCP versions with slight modification as their basic idea is independent of the TCP congestion control mechanism.

  • Performance Evaluation of the Centralized Spectrum Access Strategy with Multiple Input Streams in Cognitive Radio Networks

    Yuan ZHAO  Shunfu JIN  Wuyi YUE  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    334-342

    In this paper, we focus on a centralized spectrum access strategy in a cognitive radio network, in which a single licensed spectrum with one primary user (PU) and several secondary users (SUs) (multiple input streams) are considered. We assume the spectrum can be divided into multiple channels and the packets from variable SUs can arrive at the system simultaneously. Taking into account the priority of the PU, we suppose that one PU packet can occupy the whole licensed spectrum, while one SU packet will occupy only one of the channels split from the licensed spectrum when that channel is not used. Moreover, in order to reduce the blocking ratio of the SUs, a buffer with finite capacity for the SUs is set. Regarding the packet arrivals from different SUs as multiple input streams, we build a two-dimensional Markov chain model based on the phase of the licensed spectrum and the number of SU packets in the buffer. Then we give the transition probability matrix for the Markov chain. Additionally, we analyze the system model in steady state and derive some important performance measures for the SUs, such as the average queue length in the buffer, the throughput and the blocking ratio. With the trade-off between different performance measures, we construct a net benefit function. At last, we provide numerical results to show the change trends of the performance measures with respect to the capacity of the SU buffer under different network conditions, and optimize the capacity of the SU buffer accordingly.

  • Mathematical Analysis of Call Admission Control in Mobile Hotspots

    Jae Young CHOI  Bong Dae CHOI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:11
      Page(s):
    2816-2827

    A mobile hotspot is a moving vehicle that hosts an Access Point (AP) such as train, bus and subway where users in these vehicles connect to external cellular network through AP to access their internet services. To meet Quality of Service (QoS) requirements, typically throughput and/or delay, a Call Admission Control (CAC) is needed to restrict the number of users accepted by the AP. In this paper, we analyze a modified guard channel scheme as CAC for mobile hotspot as follows: During a mobile hotspot is in the stop-state, we adopt a guard channel scheme where the optimal number of resource units is reserved for vertical handoff users from cellular network to WLAN. During a mobile hotspot is in the move-state, there are no handoff calls and so no resources for handoff calls are reserved in order to maximize the utility of the WLAN capacity. We model call's arrival and departure processes by Markov Modulated Poisson Process (MMPP) and then we model our CAC by 2-dimensional continuous time Markov chain (CTMC) for single traffic and 3-dimensional CTMC for two types of traffic. We solve steady-state probabilities by the Quasi-Birth and Death (QBD) method and we get various performance measures such as the new call blocking probabilities, the handoff call dropping probabilities and the channel utilizations. We compare our CAC with the conventional guard channel scheme which the number of guard resources is fixed all the time regardless of states of the mobile hotspot. Finally, we find the optimal threshold value on the amount of resources to be reserved for the handoff call subject to a strict constraint on the handoff call dropping probability.

  • On the Performance of Dynamic Spectrum Access Schemes for Emergency Communication Systems

    Peng HAN  Hua TIAN  Zhensong ZHANG  Wei XIE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:6
      Page(s):
    1597-1604

    A wireless emergency communication network with a fixed allocation of spectrum resources cannot meet the tremendous demand for spectrum access when a crisis occurs. It is necessary to develop an effective spectrum access scheme to improve the performance of emergency communication systems. In this paper, we study a new emergency communication system combines cognitive radio technology and an emergency communication network. Emergency users can utility resources in a general network when traffic becomes congested in an emergency network. Non-reciprocal spectrum access scheme (NRA) and reciprocal spectrum access scheme (RA) for two heterogeneous cognitive networks, namely emergency network and general network are proposed to compare with traditional spectrum access scheme (TA). User behavior with each scheme is modeled by continuous-time Markov chains. Moreover, the blocking and dropping probabilities of users in two heterogeneous cognitive networks are derived as the performance metrics. In addition, the throughput and the spectrum utilization rate of the system are evaluated. Finally, we compare the performance of three dynamic spectrum access schemes. The simulation results show that the RA scheme is an effective scheme to enhance the performance of emergency systems.

  • Analysis of Cognitive Radio Networks with Imperfect Sensing

    Isameldin Mohammed SULIMAN  Janne J. LEHTOMÄKI  Kenta UMEBAYASHI  Marcos KATZ  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:6
      Page(s):
    1605-1615

    It is well known that cognitive radio (CR) techniques have great potential for supporting future demands on the scarce radio spectrum resources. For example, by enabling the utilization of spectrum bands temporarily not utilized by primary users (PUs) licensed to operate on those bands. Spectrum sensing is a well-known CR technique for detecting those unutilized bands. However, the spectrum sensing outcomes cannot be perfect and there will always be some misdetections and false alarms which will affect the performance thereby degrading the quality of service (QoS) of PUs. Continuous time Markov chain (CTMC) based modeling has been widely used in the literature to evaluate the performance of CR networks (CRNs). A major limitation of the available literature is that all the key factors and realistic elements such as the effect of imperfect sensing and state dependent transition rates are not modeled in a single work. In this paper, we present a CTMC based model for analyzing the performance of CRNs. The proposed model differs from the existing models by accurately incorporating key elements such as full state dependent transition rates, multi-channel support, handoff capability, and imperfect sensing. We derive formulas for primary termination probability, secondary success probability, secondary blocking probability, secondary forced termination probability, and radio resource utilization. The results show that incorporating fully state dependent transition rates in the CTMC can significantly improve analysis accuracy, thus achieving more realistic and accurate analytical model. The results from extensive Monte Carlo simulations confirm the validity of our proposed model.

  • Optimal Contention Window Adjustment for Asymmetry Traffic in Erroneous Channels over IEEE802.11 WLANs

    Zhengyong FENG  Guangjun WEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:5
      Page(s):
    1149-1157

    IEEE802.11 Wireless Local Area Networks (WLANs) are becoming more and more pervasive due to their simple channel access mechanism, Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), but this mechanism provides all nodes including Access Point and other Stations with the same channel access probability. This characteristic does not suit the infrastructure mode which has so many downlink flows to be transmitted at the Access Point that congestion at the Access Point is more likely to occur. To resolve this asymmetry traffic problem, we develop an Optimal Contention Window Adjustment method assuming the condition of erroneous channels over WLANs. This method can be easily implemented and is compatible with the original CSMA/CA mechanism. It holds the ratio of downlink and uplink flows and at the same time achieves the maximum saturation throughput in the WLANs. We use the Markov Chain analytical model to analyze its performance and validate it through the simulations.

  • Bayesian Estimation of Multi-Trap RTN Parameters Using Markov Chain Monte Carlo Method

    Hiromitsu AWANO  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2272-2283

    Random telegraph noise (RTN) is a phenomenon that is considered to limit the reliability and performance of circuits using advanced devices. The time constants of carrier capture and emission and the associated change in the threshold voltage are important parameters commonly included in various models, but their extraction from time-domain observations has been a difficult task. In this study, we propose a statistical method for simultaneously estimating interrelated parameters: the time constants and magnitude of the threshold voltage shift. Our method is based on a graphical network representation, and the parameters are estimated using the Markov chain Monte Carlo method. Experimental application of the proposed method to synthetic and measured time-domain RTN signals was successful. The proposed method can handle interrelated parameters of multiple traps and thereby contributes to the construction of more accurate RTN models.

  • Application of Markov Chain Monte Carlo Random Testing to Test Case Prioritization in Regression Testing

    Bo ZHOU  Hiroyuki OKAMURA  Tadashi DOHI  

     
    PAPER

      Vol:
    E95-D No:9
      Page(s):
    2219-2226

    This paper proposes the test case prioritization in regression testing. The large size of a test suite to be executed in regression testing often causes large amount of testing cost. It is important to reduce the size of test cases according to prioritized test sequence. In this paper, we apply the Markov chain Monte Carlo random testing (MCMC-RT) scheme, which is a promising approach to effectively generate test cases in the framework of random testing. To apply MCMC-RT to the test case prioritization, we consider the coverage-based distance and develop the algorithm of the MCMC-RT test case prioritization using the coverage-based distance. Furthermore, the MCMC-RT test case prioritization technique is consistently comparable to coverage-based adaptive random testing (ART) prioritization techniques and involves much less time cost.

  • Temporal Dependence Network Link Loss Inference from Unicast End-to-End Measurements

    Gaolei FEI  Guangmin HU  

     
    LETTER

      Vol:
    E95-B No:6
      Page(s):
    1974-1977

    In this letter, we address the issue of estimating the temporal dependence characteristic of link loss by using network tomography. We use a k-th order Markov chain (k > 1) to model the packet loss process, and estimate the state transition probabilities of the link loss model using a constrained optimization-based method. Analytical and simulation results indicate that our method yields more accurate packet loss probability estimates than existing loss inference methods.

  • Performance Analysis of Sleep Mode Operation in IEEE 802.16m Mobile WiMAX

    Sangkyu BAEK  Jung Je SON  Bong Dae CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1357-1365

    We mathematically analyze the sleep mode operation of IEEE 802.16m. The sleep mode operation for downlink traffic is modeled as a 3-dimensional discrete time Markov chain. We obtain the average power consumption of a mobile station and the average delay of a message. Numerical results match simulations very well. Numerical results show that there is a tradeoff between power consumption and message delay. We find the optimal lengths of sleep cycle and close-down time that minimize the power consumption while satisfying the quality of service (QoS) constraint on message delay. The power consumption of the sleep mode in IEEE 802.16m is better than that of sleep modes in legacy IEEE 802.16e standard under the same delay bound.

  • Intelligent Local Avoided Collision (iLAC) MAC Protocol for Very High Speed Wireless Network

    Dinh Chi HIEU  Akeo MASUDA  Verotiana Hanitriniala RABARIJAONA  Shigeru SHIMAMOTO  

     
    PAPER-Network

      Vol:
    E95-B No:2
      Page(s):
    392-400

    Future wireless communication systems aim at very high data rates. As the medium access control (MAC) protocol plays the central role in determining the overall performance of the wireless system, designing a suitable MAC protocol is critical to fully exploit the benefit of high speed transmission that the physical layer (PHY) offers. In the latest 802.11n standard [2], the problem of long overhead has been addressed adequately but the issue of excessive colliding transmissions, especially in congested situation, remains untouched. The procedure of setting the backoff value is the heart of the 802.11 distributed coordination function (DCF) to avoid collision in which each station makes its own decision on how to avoid collision in the next transmission. However, collision avoidance is a problem that can not be solved by a single station. In this paper, we introduce a new MAC protocol called Intelligent Local Avoided Collision (iLAC) that redefines individual rationality in choosing the backoff counter value to avoid a colliding transmission. The distinguishing feature of iLAC is that it fundamentally changes this decision making process from collision avoidance to collaborative collision prevention. As a result, stations can avoid colliding transmissions with much greater precision. Analytical solution confirms the validity of this proposal and simulation results show that the proposed algorithm outperforms the conventional algorithms by a large margin.

  • Analytical Model of the Single Threshold Mechanism with Hysteresis for Multi-Service Networks

    Maciej SOBIERAJ  Maciej STASIAK  Joanna WEISSENBERG  Piotr ZWIERZYKOWSKI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:1
      Page(s):
    120-132

    This paper presents a new generalized single threshold model that can be used in communications and cellular networks. In the proposed model, called Single Hysteresis Model (SHM), it is assumed that the amount of resources accessible for a new call of a given class can depend on two load areas of the system. The switching between areas is modulated by the two-state Markov chain which determines the average time the system spends in a particular load area, i.e. the area in which calls of selected classes with a reduced amount of resources (high load area) and with the initial amount of resources (low load area) are serviced. The results obtained for the discussed analytical model are compared with the results of the simulation of an exemplary WCDMA radio interface carrying a mixture of different multi-rate traffic streams. The research study confirms high accuracy of the proposed model.

1-20hit(69hit)